初二数学相似形(3)
关注:274 答案:6 手机版
解决时间 2021-05-16 00:02
- 提问者网友:萌城姑凉
- 2021-05-15 08:46
如图,正方形ABCD,P为对角线上一点,做PF⊥CD交CD于F,过P点做PE⊥BP,交CD于E,求证DF=EF
最佳答案
- 二级知识专家网友:心苍凉
- 2021-05-15 09:20
两条辅助线,连PD,作PG垂直于BC于G
先证PBG和PEF全等,(PG=PF,直角相等,∠BPG+∠GPE=90°,∠GPE+∠EPF=90°,∠BPG=∠EPF)
再证DPC和BPC全等,边角边
所以PD=PE,等腰三角形三线合一,所以DF=EF
先证PBG和PEF全等,(PG=PF,直角相等,∠BPG+∠GPE=90°,∠GPE+∠EPF=90°,∠BPG=∠EPF)
再证DPC和BPC全等,边角边
所以PD=PE,等腰三角形三线合一,所以DF=EF
全部回答
- 1楼网友:往事叫我剪短发
- 2021-05-15 13:39
过点P作PG⊥BC垂足为G
∵PF⊥CD PG⊥BC 四边形ABCD为正方形
∴四边形PGCF为正方形 CB=CF
∴CG=CF
∴BG=DF
∵四边形PGCF是正方形
∴PG=CF∠PGB=∠PFE=90°
∵∠BPE=90°=∠FPG
∠GPE为公共角
∴∠BPG=∠FPE
∴△BPG≌△FPE
∴BG=EF
DF=EF
- 2楼网友:瑾色如弦
- 2021-05-15 13:08
因PF⊥CD, PE⊥BP
故角PBC=角PED
连接PD
因角ABP=角ADP
因ABCD为正方形
故角PDE=角PBC
即角PDE=角PED
即PDE为等腰三角形
而PF⊥DE
故DF=EF
4
- 3楼网友:三虚那逝的流年
- 2021-05-15 12:36
方法一:①证明:连接PD.
∵四边形ABCD是正方形,
∴AC平分∠BCD,CB=CD,
∴△BCP≌△DCP.
∴∠PBC=∠PDC,PB=PD.
∵PB⊥PE,∠BCD=90°,
∴∠PBC+∠PEC=
360°-∠BPE-∠BCE=180°
∴∠PED=∠PBC=∠PDC.∴PD=PE.
∵PF⊥CD,∴DF=EF.
②PC-PA=■CE.
证明如下:过点P作PH⊥AD于点H.
由①知:PA=■PH=■DF=■EF,PC=■CF.
∴PC-PA=■(CF-EF).
即PC-PA=■CE.
方法二:
①证明:过点P作GH⊥AD于H,交BC于点G.
∵AC是正方形ABCD的对角线,且PF⊥CD.
∴GB=HA=HP=DF.
∵PB⊥PE,∴∠GPB+∠GPE=90°.
∵∠GPE+∠EPF=90°,
∴∠EPF=∠BPG.
又∵∠PFE=∠PGB=90°,
∴△PEF≌△PBG.
∴BG=EF.∴DF=EF.
②PC-PA=■CE.
证明如下:过点E作ET⊥HG交PC于点K.
由①知:HP=DF=EF=PT. CK=■CE.
又∵∠APH=∠KPT=45°,∠AHP=∠KTP=90°.
∴△PKT≌△PAH.∴PA=PK.
∴PC-PA=PC-PK=CK=■CE.
- 4楼网友:众里寻春风
- 2021-05-15 11:58
因为DF是正方形ABCD的对角线…角BDC为45度…有因为PE垂直PB所以三角形PDE为等边直角三角形…DE为斜边…PF垂直DE所以DF=EF
- 5楼网友:烈酒℃灼言EL
- 2021-05-15 10:31
连接PD,角PBC+角BPC+角BCP=180,角BPC+角CPE=角BPE=90,角BCP=45,所以角PBC=45+角CPE。
由于在P正方形对角线上,所以有角PBC=角PDC。
对于三角形PEC,有角PEF=角CPE+角PCE=角CPE+45。
所以有角PBC=角PEF。即角PED=角PDE,所以三角形PDE为等腰三角形,有PF⊥CD,即有DF=EF
我要举报
如以上问答内容为低俗、色情、不良、暴力、侵权、涉及违法等信息,可以点下面链接进行举报!